
Atmel Servo motor controller V0.0 (Draft)

1 Overview... 2

1.1 Serial Interface .. 2
1.2 PID.. 2

2 Hardware... 2
2.1 Atmel Servo... 2

3 Interfaces... 3
3.1 R/C input ... 3
3.2 Encoder Input .. 3
3.3 R/C output ... 3
3.4 PWM output (optional) .. 3
3.5 Serial Interface .. 4

3.5.1 Command Packet definition ... 4
3.5.2 Status Packet definition.. 4
3.5.3 Addressing... 4
3.5.4 Baud rate.. 4

4 Serial interface Commands .. 5
4.1 Reset Position (0x00)... 5
4.2 Set Address(0x01) ... 5
4.3 Define Status (0x02) .. 6
4.4 Read Status (0x03)... 6
4.5 Load trajectory (0x04) ... 7
4.6 Start motion (0x05).. 7
4.7 Set Gain (0x06).. 8
4.8 Stop Motor (0x07) ... 8
4.9 I/O control (0x08) (not implemented) .. 9
4.10 Set Home mode (0x09) (not implemented)... 9
4.11 Set Baud Rate (0x0A) .. 10
4.12 Clear status sticky bits (0x0B).. 10
4.13 Save current position as home (0x0C) .. 10
4.14 Debug command (0x0D).. 10
4.15 Send Status (0x0E) .. 10
4.16 Hard reset (0x0F)... 10

5 Appendix A... 11
5.1 Status byte definitions.. 11
5.2 auxiliary status definitions ... 11

Name Date Version Changes
Bill Arden Dec-27-2002 0.0 Initial draft

1 Overview
The Atmel servo is designed to take commands from either a serial interface or a R/C
input and use it to control a DC motor using a R/C type motor controller. A quadrature
encoder is used to precisely control the speed and position.

 This system has numerous applications like two-wheeled Battlebots using R/C control
and general Robotic applications using the serial command interface.
It can even be controlled by both the R/C interface and the serial interface at the same
time, which makes it possible to use the R/C radio as a manual/ override input.

The Atmel servo is designed to be compatible with the http://www.jrkerr.com/ devices.
The serial protocol is compatible and the command interface has only slight differences.
This means that you can mix JrKerr devices and this Atmel servo on the same buss if you
have the proper interfacing adapters.

1.1 Serial Interface
The Atmel servo uses a 5-volt full duplex serial buss. An adapter converts the RS232
from the PC to the 5-volt buss. The Atmel servo tristates it’s transmit pin when not
sending a response.

A standard daisy chain technique is used to set the device addresses. This is similar to the
JrKerr system except that the address in pin is grounded at the host so that the first device
on the buss has and Address of “1” and that there is no need to ground the pin on the last
device.

1.2 PID

2 Hardware

2.1 Atmel Servo
The Atmel servo is designed to have very few external components to make prototyping
easier. The firmware is designed to run on an Atmel AT90S2313 running at 9.216Mhz.

See the schematic for more details

3 Interfaces

3.1 R/C input
A standard 3 pin connector is provided to connect to a R/C receiver.
The signal is the standard .5 ms to 1.5ms pulse that servos use.

3.2 Encoder Input
The Quadrature encoder input is interrupt driven and can count at over 500K
transitions/second or 125K lines per second.

3.3 R/C output
The R/C output produces a standard .5 ms to 1.5mS pulse that R/C controllers like the
Victor 888 needs. The output can drive 20mA and can run the victor directly

3.4 PWM output (optional)
The PWM output creates a pulse width modulated output with a direction pin that can
drive H bridge controllers.

Note: R/C input and output are not available when PWM mode is used.

3.5 Serial Interface
The Atmel servo is controlled using packets.
Each packet has an “To” address , a command, a length, and a checksum at the end

Words are sent LSO (least significant octet) first.

3.5.1 Command Packet definition

Start Code 0xAA to start the packet
Address 1 to 127 for normal addresses

128 to 254 for group addresses
255 for broadcast to all

Command/Len Lower nibble is the command code. (see below)
Upper nibble is the Length. 0 = zero data bytes

Data*n 0 to 15 data bytes depending on the command
Checksum byte Sum of Address to end of data. (Start code is excluded)

3.5.2 Status Packet definition

Status Byte
Pos 4 bytes Current Position (If enabled)
A/D 1 byte A/D (R/C input) value (If enabled)
Vel 2 bytes Current velocity (If enabled)
Aux 1 byte Auxiliary status byte (If enabled)
Home 4 bytes Home position (If enabled)
Type 2 bytes Device type (If enabled)
Checksum byte Sum of status byte and any extra bytes
Note: Status packets are not returned for a group command unless there is a group leader.

3.5.3 Addressing
At power up or after a “Hard reset command” all devices are at a address of “0” and only
the first device will respond since its Select input is grounded.
So use a “set address” command addressing device 0 and set it to address “1”
Once the devices address is set it will select the next device so set the next device to “2”
Repeat until there are no more devices.

3.5.4 Baud rate
The baud rate defaults to 19200.
Send a broadcast “Set baud rate” command to set all the controllers to a new baud rate.

4 Serial interface Commands
(hex) Command Returns (unless sent as a group command)
00 Reset position Status
01 Set Address [Address][group] Status
02 Set Status Type [x] Status
03 Get Status [x] Custom Status
04 Load trajectory [Control][0 to 13] Status
05 Start Motion Status
06 Set Gain [14] Status
07 Stop motor [control] [0 or 4] Status
08 I/O control [1] (not used) Status
09 Set Home mode [1] (not used) Status
0A Set Baud rate [Baud byte] Group command only. No reply
0B Clear Status Sticky bits Status
0C Save current position as home Status
0D Debug memory read/ write Debug info
0E Return last status Status
0F Reset None

Address
Atmel will start at an address of 00 (hex)
The Select in and select out pins are daisy chained from the controller.
The controller grounds the select in of the first unit.

4.1 Reset Position (0x00)
This command set’s the encoder position and target position to “0”
If issued during a trapezoidal profile motion the motor will stop.

4.2 Set Address(0x01)
Data byte 1 = Address 1 to 127
Data Byte 2 = Group address 0x80 to 0xFF. Clear top bit if group leader.

If the address is “0” then the module will tristate Select in and select out.

4.3 Define Status (0x02)
This command sets what items are returned with status.

Data Byte 1 = Status items. (Add or “or” the hex numbers together)
Bit (Hex) Size True to send
Bit 0 0x01 Long 4 Current encoder Position, LSO
Bit 1 0x02 Byte 1 Send A/D value. (R/C input)
Bit 2 0x04 Short 2 Current Velocity. (Counts per servo tick)
Bit 3 0x08 Byte 1 Auxiliary status byte
Bit 4 0x10 Long 4 Saved encoder Position
Bit 5 0x20 Word 2 Send Device ID (Atmel Servo = 0)
Bit 6
Bit 7

The reply status will reflect the changes.
At power up the status items will default to “0”
See the status packet definition for more on the status information.

4.4 Read Status (0x03)
Similar to “Define status” except that the status list will not be saved.
This command returns a one-time status message.

See “Define status” for more information.

Data Byte 1 = Status items. (Add or “or” the hex numbers together)
Bit (Hex) Size True to send
Bit 0 0x01 Long 4 Current encoder Position, LSO
Bit 1 0x02 Byte 1 Send A/D value. (R/C input)
Bit 2 0x04 Short 2 Current Velocity. (Counts per servo tick)
Bit 3 0x08 Byte 1 Auxiliary status byte
Bit 4 0x10 Long 4 Saved encoder Position
Bit 5 0x20 Word 2 Send Device ID (Atmel Servo = 0)
Bit 6
Bit 7

4.5 Load trajectory (0x04)
This command performs various types of moves.

As bits are set in the control byte additional data bytes will need to be sent in the order
listed.

Data Byte 1 = Control byte. (Add or “or” the hex numbers together)
Bit (Hex) More data
0 0x01 4 bytes Load target position for a trapezoidal profile move.
1 0x02 Unsigned

4 bytes
Load target velocity for a trapezoidal profile move.

2 0x04 Unsigned
4 bytes

Load acceleration for a trapezoidal or velocity move.

3 0x08 Unsigned
1 Byte

Load PWM (R/C out magnitude) value.
PWM output is set to “0” if Position servo is disabled

4 0x10 Servo mode
0 = manual mode. (See bit 3)
1 = Position servo mode

5 0x20 0 = trapezoidal move
1 = velocity move

6 0x40 0=PWM or R/C out FWD
1= PWM or R/C out REV

7 0x80 1 = start move now

4.6 Start motion (0x05)
This command is the same as setting bit 7 in the “Load trajectory” command.
This command is useful for loading multiple trajectories and then starting the motors at
the same time with a group command.

4.7 Set Gain (0x06)
This command set’s parameters for the PID and limit settings.
Bytes
1,2 “Kp” PID Position gain.
3,4 “Kd” PID Velocity gain.
5,6 “Ki” PID Integral gain.
7,8 “IL” PID Integration limit. (This is multiplied by 256 before being used)
9 “OL” Output limit.
10 “CL” Current limit. (not used)
11,12 “EL” Position Error limit.
13 “SR” Servo rate divisor. (1.953Khz / x) = rate in Hz
14 Amplifier dead band compensation.

Positive to jump between –x and +x
Negative to create a dead band.

4.8 Stop Motor (0x07)
Stops the motor
Data Byte 1 = Control
Bit Hex More data
0 0x01 Amplifier enable

0 = sets “AMP_EN” to low
1 = sets “AMP_EN” to high

1 0x02 Turn off position servo
1 = Disable position servo and set PWM to “0”.

2 0x04 Stop abruptly
1 = set current command velocity and target velocity to “0”
Enables position servo and enters velocity mode.

3 0x08 1= Stop smoothly by setting target velocity to “0”
Enables position servo and enters velocity mode.

4 0x10 4 bytes 1= Jump to x (Causes motor to jump to new position.)
Enables position servo and enters velocity mode.
Note: this can be used to create crude motions.

5 0x20
6 0x40
7 0x80

4.9 I/O control (0x08) (not implemented)
This command controls the configuration of limit1 and limit2 to be either inputs or
outputs.
Data Byte 1 = Control
Bit Hex Set to
0 0x01 Output value of limit1
1 0x02 Output value of limit2
2 0x04 Direction of limit1 pin

0=output
1= input

3 0x08 Direction of limit2 pin
0=output
1= input

4.10 Set Home mode (0x09) (not implemented)

Sets how the home point is controlled.
Data Byte 1 = Control
Bit Hex Set to
0 0x01 Capture home on change of limit1 input
1 0x02 Capture home on change of limit2 input
2 0x04 Turn motor off at home. “AMP_EN”
3 0x08 Capture home on change of encoder index input.
4 0x10 Stop abruptly on home position.
5 0x20 Stop Smoothly on home position.
6 0x40 Capture home when an excess position error occurs
7 0x80

4.11 Set Baud Rate (0x0A)

This command sets the baud rate.
This is usually sent as a broadcast since any reply would be at the new baud rate.

Data Byte 1 = baud rate devisor
Baud rate Number Notes
9600 129
19200 63 Default
38400 30
57600 20
115200 10

4.12 Clear status sticky bits (0x0B)
This command clears the bits in the status byte that are latched such as “over current”,
“Position Error”, “Position overflow”, “Servo timer overrun”. These bits will stay set
until this command is sent.

4.13 Save current position as home (0x0C)
Saves current encoder position as “Home”
This is useful to synchronize reading of the encoder position by sending this as a group
command.

4.14 Debug command (0x0D)
This command reads or writes to data ram for diagnostic purposes.
To read
 Data Byte 1,2 = Address to read from.
 Data Byte 3 = length
To Write
 Data Byte 1,2 = Address to write to + 0x8000
 Data*n = data to write. (packet length is used to determine length)

4.15 Send Status (0x0E)
This command returns a status packet.

4.16 Hard reset (0x0F)
This command sets unit back to the power up state.

5 Appendix A

5.1 Status byte definitions

Bit Hex Name Definition
0 0x01 move_done Clear if a trapezoidal move is in progress or if accelerating

or decelerating in velocity mode
Set if motor is not moving or if PID is disabled.

1 0x02 cksum_error Set if there was a checksum error in the previous command
packet. (If the checksum is wrong there is no reply)

2 0x04 overcurrent (not used)
Set to “0”
Must be cleared using the “clear sticky bits" command.

3 0x08 power_on (Not used)
Set to “1”

4 0x10 pos_error Set if the position error exceeds the position error limit.
Set if PID is disabled.
Must be cleared using the “clear sticky bits" command.

5 0x20 Limit1 N/A Set to “0”
6 0x40 Limit2 N/A Set to “0”
7 0x80 Home in

progress
N/A Set to “0”

Notes:

5.2 auxiliary status definitions

Bit Hex Name Definition
0 0x01 Index. Inverted value of the encoder index input.
1 0x02 pos_wrap Set if the 32 bit position counter wraps or overflows.

Must be cleared using the “clear sticky bits" command.
2 0x04 servo_on “1” if the position servo is enabled.
3 0x08 accel_done Set when the initial acceleration phase of a trapezoidal

profile move is complete.
Cleared when the next move is started.

4 0x10 slew_done Set to “1” when the slew? portion of a trapezoidal profile
move is complete.
Cleared when the next move is started.

5 0x20 servo_overrun Set to “1” when processor runs out of processing time.
Cleared when the next move is started.

6 0x40 Set to “0”
7 0x80 Set to “0”
Notes

